打印本文 打印本文 关闭窗口 关闭窗口
通用图像识别的神经网络代码描述
作者:武汉SEO闵涛  文章来源:敏韬网  点击数1750  更新时间:2009/4/23 18:27:00  文章录入:mintao  责任编辑:mintao
k] := Change;
    end;

  for i := 0 to nI - 1 do
    for j := 0 to nH - 1 do
      if Connections[i, j] then begin
        Change := Hidden_Deltas[j] * aI[i];
        wI[i, j] := wI[i, j] + n * Change + m * cI[i, j];
        cI[i, j] := Change;
      end;

end;

function TGraphicBpnn.UpDate(inputs: TSingleExtendedArray): extended;
var
  i, j, k: Longint;
  Sum: extended;
begin
  for i := 0 to nI - 1 do
    aI[i] := Inputs[i];
  for j := 0 to nH - 1 do begin
    Sum := 0;
    for i := 0 to nI - 1 do
      if Connections[i, j] then
        Sum := Sum + aI[i] * wI[i, j];
    aH[j] := 1 / (1 + Exp(-Sum));
  end;
  for k := 0 to nO - 1 do begin
    Sum := 0;
    for j := 0 to nH - 1 do
      Sum := Sum + aH[j] * wO[j, k];
    aO[k] := 1 / (1 + Exp(-Sum));
  end;
  UpDate := aO[0];
end;

procedure TGraphicBpnn.Train(n, m: extended);
var i: Longint;
begin
  for i := 0 to samplecounts - 1 do begin
    UpDate(Samples[i].Ins);
    BackPropagate(Samples[i].Outs, n, m);
  end;
end;

procedure TGraphicBpnn.AddToTrain(Ins, Outs: TSingleExtendedArray);
var i: longint;
begin
  if samplecounts > High(Samples) then setlength(Samples, samplecounts + $100);
  setlength(Samples[samplecounts].Ins, nI);
  setlength(Samples[samplecounts].Outs, nO);
  for i := 0 to nI - 1 do Samples[samplecounts].Ins[i] := Ins[i];
  for i := 0 to nO - 1 do Samples[samplecounts].Outs[i] := Outs[i];
  Inc(samplecounts);
end;

procedure TGraphicBpnn.AddToTest(Ins, Outs: TSingleExtendedArray);
var i: longint;
begin
  if TestCounts > High(TestSet) then setlength(TestSet, TestCounts + $100);
  setlength(TestSet[TestCounts].Ins, nI);
  setlength(TestSet[TestCounts].Outs, nO);
  for i := 0 to nI - 1 do TestSet[TestCounts].Ins[i] := Ins[i];
  for i := 0 to nO - 1 do TestSet[TestCounts].Outs[i] := Outs[i];
  Inc(TestCounts);
end;

procedure TGraphicBpnn.SaveToFile(FileName: string);
var
  i, j, k: longint;
  SaveStream: TMemoryStream;
begin
  SaveStream := TMemoryStream.Create;
  SaveStream.Seek(0, 0);
  for i := 0 to nI - 1 do
    for j := 0 to nH - 1 do begin
      SaveStream.Write(wI[i, j], sizeof(wI[i, j]));
      SaveStream.Write(cI[i, j], sizeof(cI[i, j]));
    end;
  for j := 0 to nH - 1 do
    for k := 0 to nO - 1 do begin
      SaveStream.Write(wO[j, k], sizeof(wO[j, k]));
      SaveStream.Write(cO[j, k], sizeof(cO[j, k]));
    end;
  SaveStream.SaveToFile(FileName);
  SaveStream.Free;
end;

procedure TGraphicBpnn.LoadFromFile(FileName: string);
var
  i, j, k: longint;
  ReadStream: TMemoryStream;
begin
  ReadStream := TMemoryStream.Create;
  ReadStream.LoadFromFile(FileName);
  ReadStream.Seek(0, 0);
  for i := 0 to nI - 1 do
    for j := 0 to nH - 1 do begin
      ReadStream.Read(wI[i, j], sizeof(wI[i, j]));
      ReadStream.Read(cI[i, j], sizeof(cI[i, j]));
    end;
  for j := 0 to nH - 1 do
    for k := 0 to nO - 1 do begin
      ReadStream.Read(wO[j, k], sizeof(wO[j, k]));
      ReadStream.Read(cO[j, k], sizeof(cO[j, k]));
    end;
  ReadStream.Free;
end;

function TGraphicBpnn.Predict(Ins: TSingleExtendedArray): extended;
begin
  try
    Predict := Update(Ins);
  except
    Predict := 0;
  end;
end;

function TGraphicBpnn.Test: extended;
var
  PreRet: extended;
  i, Counts, Ret: longint;
begin
  Counts := 0;
  for i := 0 to TestCounts - 1 do begin
    PreRet := Predict(TestSet[i].Ins);
    if PreRet > 0.5 then Ret := 1 else Ret := 0;
    if Ret = TestSet[i].Outs[0] then Inc(Counts);
  end;
  Result := Counts / TestCounts;
end;

destructor TGraphicBpnn.Destroy;
begin
  setlength(aI, 0);
  setlength(aH, 0);
  setlength(aO, 0);
  setlength(Output_Deltas, 0);
  setlength(Hidden_Deltas, 0);
  setlength(wI, 0, 0);
  setlength(wO, 0, 0);
  setlength(cI, 0, 0);
  setlength(cO, 0, 0);
  setlength(Connections, 0, 0);
  setlength(Samples, 0);
  inherited;
end;

上一页  [1] [2] 

打印本文 打印本文 关闭窗口 关闭窗口